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Standard X-ray Views

Standard Radiograph acquires projections of the body, but since structures are 
overlaid on each other, there is no truly three-dimensional information 
available to the radiologist
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Cross-sectional imaging

• Standard X-rays form projection images
• Multiple planes superimposed
• Select “slice” by moving x-ray source 

relative to film
• Simulates “focusing” of x-rays

However, while X-rays cannot be focussed in the same manner as light (as in 
an optical transmission microscope for example), focussing can be simulated 
through the relative motion of the x-ray and the recording medium
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Xray Tube
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Fulcrum plane A A

B B

Motion of Film

Motion of X-ray Tube

Classical Tomography

Classical longitudinal tomography used this principle. By moving the x-ray 
tube and the film such that the central ray from the tube passes through a single 
point in the image-plane (fulcrum plane), information from the fulcrum plane 
(A—A) would be imaged sharply o the film, but data from other planes (B—B) 
would be blurred. Thus although the desired plane was imaged sharply, it was 
overlaid with extraneous information that often obscured the important detail in 
the fulcrum plane  
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Transverse Tomography

If transverse sections were desired, a different geometry was required. Here the 
patient and film were rotated while the x-ray tube remained fixed. However the 
basic principle remained the same: the fulcrum plane was defined by the 
intersection of the line joining the focus of the x-ray tube, and the the centre of 
rotation of the film on the pedestal.
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Object being imaged

Imaged 
(fulcrum) 
plane
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Film plane

Transverse Tomography

This figure illustrates the geometry of the previous slide. Again, while the 
fulcrum plane is imaged sharply (because its image rotates at exactly the same 
rate as the film), structures from planes above and below the fulcrum plane cast 
shadows that move with respect to the film and therefore the ima ge becomes 
indistinct as before.
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Transverse Tomogram of 
Thorax

This techniques was known as a Layergraphy, and the image was known as a 
layergram. This slide shows a layergram through the thorax, and while a few 
high contrast structures (ribs), and the lungs are visible, the image is of limited 
diagnostic use.
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x-ray source 

Object being imaged

Imaged plane

Direction of rotation

Film plane

(Single spot)Aperture to form 
laminar beam

“Image” of
object

What if we change the geometry of the layergraph so that only a single plane 
was illuminated? For a single angle of view, a spot in the desired cross-section 
would project a line over the film. If the object and the film were rotated as 
before, the lines would intersect on the film to give a blurred representation of 
the object.
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Projections of point object
from three directions

Back-projection onto 
reconstruction plane

For example, after only three projections, the lines would intersect to yield a 
“star-pattern”……
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Profile through object Profile through image

Object Image

f(r) f(r) ∗1/r

And after a full rotation of the film and the object, this pattern would become a 
diffuse blur. The nature of the blur can readily be shown to be = 1/r. Thus any 
structure in the cross-section is recorded on the film as a result of a convolution 
of the original cross-section with the two-dimensional function 1/r.
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“forward” Fourier Transform

“inverse” Fourier Transform

Let’s get Fourier Transforms 
out of the way first!

Since the Fourier Transform plays a major role in the understanding of CT 
reconstruction, we introduce it here to define the appropriate terms. 
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Reconstruction

• Image is object blurred by 1/r
• 2D FT of 1/r is 1/ρ
• Why not de-blur image?

– 2D FT of Image
– Multiply FT by | ρ|
– Invert FT

• Voila!

Back to the blurred layergram! If the image is blurred with a function whose 
FT is well behaved, we should be able to construct a de-blurring function. It 
turns out that the 2-D FT of 1/r is 1/ρ. Since the inverse of 1/ρ is | ρ|, then we 
should be able to compute the 2D FT of the blurred image,  multiply the FT of 
the result image by | ρ| , and then calculate the inverse FT.
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There’s more than one 
way to skin a CAT

scan

The previous approach is certainly one approach, but not necessarily the most 
efficient. There are in fact a number of different ways to view the 
reconstruction process.
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Central Slice Theorem

• Pivotal to understanding of CT 
reconstruction

• Relates 2D FT of image to 1D FT of its 
projection

• N.B. 2D FT is “k-space” of MRI

One of the most fundamental concepts in CT image reconstruction if the 
“Central-slice” theorem. This theorem states that the 1-D FT of the projection 
of an object is the same as the values of the 2-D FT of the object along a line 
drawn through the center of the 2-D FT plane. Note that the 2-D Fourier plane 
is the same as K-space in MR reconstruction.
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Central Slice Theorem

2D FT

φ

Projection at angle φ 1D FT of Projection at angle φ

The 1-D projection of the object, measured at angle φ, is the same as the 
profile through the 2D FT of the object,  at the same angle.  Note that the 
projection is actually proportional to exp (-∫u(x)xdx) rather than the true 
projection ∫u(x)xdx, but the latter value can be obtained by taking the log of 
the measured value.
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2-D Fourier Transform

Horizontal Projection

Vertical Projection

1-D Fourier Transform

1-D Fourier Transform

Interpolate in Fourier 
Transform

2-D Inverse FT

If all of the projections of the object are transformed like this, and interpolated 
into a 2-D Fourier plane, we can reconstruct the full 2-D FT of the object. The 
object is then reconstructed using a 2-D inverse Fourier Transform.
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Filtered Back-projection

• Direct back-projection results in blurred 
image

• Could filter (de-convolve) resulting 2-D 
image

• Linear systems theory suggests order of 
operations unimportant

• Filter projection profiles prior to back 
projection 

Yet another alternative, (and the one that is almost universally employed) 
employs the concept of de-blurring, but filters the projections prior to back-
projection. Since the system is linear, the order in which these operations are  
employed is immaterial.
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Convolution Filter

In Fourier Space, filter has the form |ρ|
Maximum frequency must be truncated at ρ’ 
Filtering may occur in Fourier or Spatial domain

ρ’−ρ’ ρ0
Frequency response of filter Sampled convolution filter

Since the Fourier form of the filter was already shown to be |ρ|, the spatial 
form is the inverse FT of this function. The precise nature depends on the 
nature of the roll-off that is applied in Fourier space, but the net result is a 
spatial domain function that has a positive delta-function flanked by negative 
“tails”
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FT

X |ρ|
IFT

Original projection
of point

Compute Fourier 
Transform of projection

Multiply  Fourier 
Transform by |ρ|

Compute inverse 
Fourier Transform

Result is Modified 
(filtered) projection

+

− −

OR convolve with  
IFT of above

Hence we can take the projection of the cross-section, shown here as a single 
point, and either perform the processing in the Fourier domain through 
multiplication with |ρ|, or on the spatial domain by convolving the projection 
with the IFT of |ρ|. This turns the projection into a “filtered” projection, with 
negative side-lobes. It is in fact a spatial-frequency-enhanced version of the 
original projection, with the high-frequency boost being exactly equal to the 
high-frequency  attenuation that is applied during the process of back-
projection. 
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Back-projecting the Filtered 
Projection

If we now perform the same operation that we performed earlier with the 
unfiltered projection, we see that the positive parts of the ima ge re-enforce 
each other, as do the negative components, but that the positive and negative 
components tend to cancel each other out.
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Back-projecting the Filtered 
Projection

After a large number of back-projection operations, we are left with everything 
cancelling, except for the intensities at the position of the original spot. While 
this procedure is demonstrated here with a single point in the cross-section, 
since a arbitrary projection is the sum of a large number of such points, and 
since the system is linear, we can state that the same operation of a large 
number of arbitrary projections will result in a reconstruction of the entire 
cross-section.
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Cross-section of head

Vertical projection 
of this cross-section Modified (filtered) projection

FT ρ Inv FT

Back-project filtered 
projections (at all angles)

Reconstruction Demo
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Invert Fourier Transform

Back-project for each angle

Original projectionsReconstructed image

The Mathematics of CT Image 
Reconstruction

The mathematics of the image reconstruction process, can be expressed 
compactly in the above equation, where the terms have been grouped to reflect 
the “filtered-back-projection” approach
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What happens to the DC 
term?

• After “ρ” filtering, DC component of FT 
is set to zero

• Average value of reconstructed image is 
zero!!!

• But CT images are reconstructed with 
non-zero averages!

• Huh????

A conceptual problem arises with this approach though. If we are filtering the 
Fourier Transform of the mage by multiplying it by the modulus of the spatial 
frequency, then we explicitly multiply the zero frequency term (the “DC” 
term) by zero. This implies that the reconstructed image has an average value 
of zero! And yet the reconstructed images always in fact have their correct 
value. What’s up?
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Side-step to convolution 
theory

∗
f(x) g(x)

=

f(x) g(x)∗

a b a+b

To explain the apparent paradox, we need to revisit an important aspect of 
convolution theory. When two function are convolved, the result of this 
operation has a support equal to the sum of the supports of the individual 
functions. It doesn’t matter whether the operation has been carried out in the 
image domain or the Fourier domain: the result is the same.



26

DC Term?

Extent of original projection Extent of projection after filtering

+

- +
+

+
+

++

+
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-
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-

--• Reconstructed image indeed has average     
….value of zero
• Only central part of interest
• Reconstruction procedure ignores values 
….outside FOV
• All is well!

So turning back to our reconstruction example, the full reconstructed image 
(which actually has a support  diameter of double that of the original 
projections),  indeed has an average value of zero (this is what setting the 
“DC” term in Fourier domain to zero implies),  but that the part of the image 
that is of interest (i.e. the original field-of-view defined by the projections)  
contains exactly the correct positive values. It is the surrounding annulus (that 
is of no interest) that contains the negative values that exactly cancel the 
positive values in the center. Note that the outer annulus does not have to be 
explicitely computed, and so it is seldom apparent. 
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Projections to Images

Projections

Back-Project

2D FT

x 2D Rho-filter

1D FT

2D IFT

Image

Interpolate into 2D 
Fourier Space

2D IFT

1D FT

1D IFT

⊗ 1D Rho-filter

Back-Project

So there are multiple routes to arrive at an image from its projections.
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Sinogram

Scanned Object

Projection Data

ξ

φ

φ

φ

Another concept that is useful to use when considering CT reconstruction is 
the “Sinogram”, which is simply the 2-D array of data containing the 
projections.  Typically, if we collect the projections, using a hypothetical 
parallel-beam  scanning arrangement, using φ as the angular parameter and ξ
as the distance along the projection direction, we refer to the (φ, ξ) plane 
representation of the data as the “sinogram”.
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Projection Geometries

Parallel-beam configuration Fan-beam configuration

ξ

φ

It is worth pointing out that there are two common geometries for data 
collection; namely parallel-beam and diverging-beam. The parallel-beam 
geometry was once used in practical scanners, while the diverging-geometry is 
employed exclusively today. The parallel-beam configuration is useful explain 
the concepts; allows simpler reconstruction algorithms, and is often the form to 
which diverging-ray data are converted prior to image-reconstruction.
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3rd and 4th Generation 
Systems

Both 3rd and 4th generation systems employ diverging-ray geometry 
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¼ Detector Offset

• In 3rd generation fan-beam geometry, detector width 
= detector spacing.

• Should sample 2x per detector width (Nyquist)
• Symmetrical configuration violates this requirement
• ¼ offset achieves appropriate sampling at no cost
• Symmetrical detector 

– 180° + fan angle

• ¼ Det offset
– 360° to fill sinogram

There is a fundamental problem with 3rd generation geometries, where the 
detector width is effectively the same as the sampling width. In theory the 
sampling should be equal to half the detector width, bit this is clearly 
impossible with the 3rd generation geometry. However the simple technique of 
offsetting the detector array from the centre of rotation by ¼ of the detector 
width achieves effectively the appropriate sampling strategy
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No Detector Offset

Rotate about point on central ray

0°
180°

If we rotate a 3rd generation system about the central ray, it is clear that 
detectors symmetrically placed about the central detector, mostly “see” the 
same annulus of data in the image.
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No Detector Offset

• Symmetrical pairs of 
detectors “see” 
same ring in object

• Minor detector 
imbalance leads to 
significant “ring 
artefact”.

Rotate about point on central ray

As we rotate the gantry through 180 deg, these pairs respond mainly to data 
lying on rings. Incidentally, detector imbalance generates “ring-artefacts” in 
the images.
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With ¼ -detector Offset
• Note red and green circles 

now interleaved – sinogram
sampling is doubled! 

Rotate about point ¼ det spacing from central ray

0°
180°

However, if we offset the detector by ¼ of the detector spacing, we see that the 
same pairs of detectors now see different annuli. Thus we have effectively 
doubled the sampling without any cost to the system except that we must scan 
the full 360 degrees, rather that the 180 deg + fan angle that is all that is 
necessary with the symmetrical configuration.
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Reconstruction from Fan-
beam data

• Interpolate diverging projection data into 
parallel-beam sinogram

• Adapt parallel-beam back-projection 
formula to account for diverging beam
– weighting of data along projection to 

compensate for non-uniform ray-spacing
– inverse quadratic weighting in back-

projection to compensate for decreased 
ray-spacing towards source.

If we have data from a fan-beam geometry system (highly likely with today’s 
scanners), we can do either of two things. Firstly we can recognise that every 
ray in a fan-bean has an equivalent ray in a parallel-beam configuration, and 
simply interpolate into a parallel-beam sinogram prior to image reconstruction. 
Or we can adapt the reconstruction formulae to reflect the diverging-ray, rather 
than the parallel-ray data.
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Fan-beam Reconstruction

Actual Detector Arc

Equivalent Linear Detector

There are two aspects to these formula modifications. First we observe that the 
equi-spaced data collected on an are are the same as non-linearly –space data 
collected along a linear detector. We therefore multiply the projection data 
elements with a 1/cosine weighting factor to reflect this fact. 
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Diverging Beam 
Reconstruction

Weight back-projection 
to account for converging rays

Weight convolution to  
to account for non-linear sampling

Then perform diverging-ray back-projection as before

Also, since the rays become closer together as they approach the source, we 
must incorporate an inverse quadratic weighting factor in the back-projection 
to account for this “bunching-up” of the rays.
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Projection Geometries

θφ

ξξ

Parallel-beam configuration Fan-beam configuration

Ray defined by θ and ψ in fan-beam is the same as that defined 

by ξ and φ in parallel-beam configuration

ψ

Back to the two geometries. The red ray in both the parallel and diverging 
configurations are the same, and therefore occupy the same point in sinogram
space.
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Sinogram
ξ

φ π

2π

0

While the parallel-beam data fill up sinogram space in parallel rows, the 
diverging ray data fill up the same space along curved lines. Note that 
sinogram repeats itself after 180 deg, except that the order of the individual 
data elements are reversed (a consequence of the fact  the projection at angle 0 
is the same as that at angle 180 deg, except that  it is flipped). Note also that 
because of this behavior, the data from the diverging–ray sinogram at 180 deg 
“wraps-around” into the sinogram at the top.
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Parallel vs Fan-beam

• Every ray-sum in fan-beam “sinogram” 
has equivalent point in parallel-beam 
sinogram

• Interpolate div ray projections into 
parallel-beam sinogram

• Perform reconstruction as if data were 
collected in parallel-beam geometry

This behaviour allows us to interpolate the diverging-ray data into a parallel-
ray sinogram.
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Interpolating fan-data into 
Sinogram

Note that sinogram line for
φ= 0 and φ = π are equivalent
but reversed in ξ

Rotating fan-beam detector by 
π misses red areas in sinogram

Need to rotate extra ψ (fan angle)
To collect sufficient data.

Need to rotate through 2 π with ¼ detector
offset

ξ

φ

0

π

2π
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Spiral (Helical) Scanning

• X-ray tube/detector rotates continuously
• Patient moves continuously
• Single or Multi-slice
• Fundamental requirements of CT violated

– Successive projections not from same slice
– Projections not self-consistent

• Virtual projections of required slices 
interpolated from acquired data - “Z-
interpolation”

Most modern scanners operate in a helical or spiral mode where the x-ray tube 
and detector system rotate continuously during data acquisition as the patient 
table moves through the scanner. Under these conditions, the projections are 
not collected on a slice-by-slice basis, and so the reconstruction techniques 
described earlier cannot be used directly. However, virtual projections, (or a 
virtual sinogram) can be constructed for each required reconstructed slice by 
suitable interpolation from the adjacent projections.
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Angle of projection

Z - displacement

Pθn

Pθn+π

qn

1-qn

P’n(z) = Pθn(1-q) + Pθn+π (q)

Helical approach

Slice-by-slice vs Helical
Slice-by-slice approach

Pθn+2π

In a standard CT scanner, the slice to be imaged  would be moved into a 
particular z position, and the gantry rotated through 360 degrees to acquire al 
the necessary projections. With spiral scanning, we musty, for each projection 
angle, interpolate new projections from those available at z-positions different 
from that of the reconstructed slice. The simplest approach to derive an 
interpolated projection for angle θ for example, is to locate the projections for 
this angle on each side of the desired slice and compute a synthesised 
projection by linear interpolation. A slightly more sophisticated approach is to 
recognise that points in the sinogram repeat every 180 deg +/- the half the fan 
angle, and interpolate new rays from projections in opposite directions. 



44

Interpolating from spiral 

projection data

Gantry 
Rotation 

Angle

Z-distance

Sinograms of slices to
be reconstructed

Extended sinogram of 
spiral rotation projection data

0

π
π

2π 2π

3π 3π

4π

Sample # (along detector)

φ

φ-π •Regular sinogram          
repeats every π
•Use samples of spiral 
sinogram separated by π
for interpolation.

Another way or thinking about this is to imagine that the data from a helical 
scanner creates an extended sinogram from which conventional sinograms at 
the appropriate z intervals need to be calculated.
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Multi-slice Spiral

• Linear or higher-order interpolation schemes 
can be used

• Interpolation from views spaced by 180 or 
360 deg

• Reconstruction procedure similar to that 
previously described

• Multi-slice detectors provide the advantage of 
multiple spiral sinograms acquired 
simultaneously

• For large multi-slice subtended angles, cone-
beam algorithms may be employed 
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Cone-beam Geometry

• No exact reconstruction for 
circular cone-beam geometry

• Approximate procedures 
proposed by Feldcamp, Wang.

• Perform data weightings similar 
to div-ray back-projection

• Back-project into 3D volume
• Reconstructions acceptable if 

cone-angle not too large
• Used in commercial 3D 

angiograpy systems

Source

Detector

When the angle of beam divergence in the z direction becomes large, then the 
slices can no longer be considered to be parallel. Even in multi-slice detectors 
this can become a problem. In this case the back-projection must be performed 
along converging rays in both directions. While there is no exact 
reconstruction formula for reconstructing objects from cone beam data when 
the x-ray source rotates in q plane about a fixed point, extension of the 
methods presented earlier nevertheless permit high quality images to be 
reconstructed.
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3D CT
C-arms are not just for Angiography!

Typical 3D cone-beam CT scanners are built around standard C-arm 
angiographic systems.
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Summary…

• CT reconstruction is fundamentally an 
image de-blurring problem

• The key principle is the Central Slice 
Theorem

• Of the many approaches for image 
reconstruction, the convolution-back-
projection method is preferred
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Summary

• ¼ detector offset increases sampling rate at 
no cost

• Spiral scanning techniques use interpolation 
to create new sinograms related to the 
required slices

• While cone-beam reconstruction is only 
approximate, high quality images can 
nevertheless be obtained  by adapting fan-
beam techniques to cone-beam geometry


