Radiology - Technology Information Portal
Thursday, 25 April 2024
• Welcome to Radiology-TIP.com!
     • Sign in / Create account
 
 'Array' 
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Searchterm 'Array' found in 0 term [
] and 9 definitions [
]
Result Pages :
Diagnostic Imaging
Imaging refers to the visual representation of an object. Today, diagnostic imaging uses radiology and other techniques, mostly noninvasive, to create pictures of the human body. Diagnostic radiography studies the anatomy and physiology to diagnose an array of medical conditions. The history of medical diagnostic imaging is in many ways the history of radiology. Many imaging techniques also have scientific and industrial applications. Diagnostic imaging in its widest sense is part of biological science and may include medical photography, microscopy and techniques which are not primarily designed to produce images (e.g., electroencephalography and magnetoencephalography).
Brief overview about important developments:
Imaging used for medical purposes, began after the discovery of x-rays by Konrad Roentgen 1896. The first fifty years of radiological imaging, pictures have been created by focusing x-rays on the examined body part and direct depiction onto a single piece of film inside a special cassette.
In the 1950s, first nuclear medicine studies showed the up-take of very low-level radioactive chemicals in organs, using special gamma cameras. This diagnostic imaging technology allows information of biologic processes in vivo. Today, single photon emission computed tomography (SPECT) and positron emission tomography (PET) play an important role in both clinical research and diagnosis of biochemical and physiologic processes.
In the 1960s, the principals of sonar were applied to diagnostic imaging. Ultrasound has been imported into practically every area of medicine as an important diagnostic tool, and there are great opportunities for its further development. Looking into the future, the grand challenges include targeted contrast imaging, real-time 3D or 4D ultrasound, and molecular imaging. The earliest use of ultrasound contrast agents (USCA) was in 1968.
The introduction of computed tomography (CT/CAT) in the 1970s revolutionized medical imaging with cross sectional images of the human body and high contrast between different types of soft tissues. These developments were made possible by analog to digital converters and computers. First, spiral CT (also called helical), then multislice CT (or multi-detector row CT) technology expanded the clinical applications dramatically.
The first magnetic resonance imaging (MRI) devices were tested on clinical patients in 1980. With technological improvements including higher field strength, more open MRI magnets, faster gradient systems, and novel data-acquisition techniques, MRI is a real-time interactive imaging modality that provides both detailed structural and functional information of the body.

Today, imaging in medicine has been developed to a stage that was inconceivable a century ago, with growing modalities:
x-ray projection imaging, including conventional radiography and digital radiography;
scintigraphy;
single photon emission computed tomography;
positron emission tomography.

All these types of scans are an integral part of modern healthcare. Usually, a radiologist interprets the images. Most clinical studies are acquired by a radiographer or radiologic technologist. In filmless, digital radiology departments all images are acquired and stored on computers. Because of the rapid development of digital imaging modalities, the increasing need for an efficient management leads to the widening of radiology information systems (RIS) and archival of images in digital form in a picture archiving and communication system (PACS). In telemedicine, medical images of MRI scans, x-ray examinations, CT scans and ultrasound pictures are transmitted in real time.

See also Interventional Radiology, Image Quality and CT Scanner.
• 
View NEWS results for 'Diagnostic Imaging' (13).Open this link in a new window.
Display Matrix
The display matrix is the matrix in the displayed image and can be equal to or larger than the reconstruction matrix size due to interpolation procedures. This array of rows and columns of pixels is typically between 512 x 512 and 1024 x 1024.
Gamma Camera
(Scintillation Camera, Scintillation Gamma Camera, Gamma Scintillation Camera or Anger Gamma Camera) A gamma camera is an imaging device used in nuclear medicine to scan patients who have been injected, inhaled, or ingested with small amounts of radioactive materials emitting gamma rays. The gamma camera records the quantity and distribution of the radionuclide that is attracted to a specific organ or tissue of interest.
The first gamma camera was developed and introduced by Hal O. Anger in 1957/58. The structure hasn't changed by today. A gamma camera consists of:
a collimator, usually a multihole collimator;
detector crystals, typically thallium-activated NaI scintillation crystal are used;
photomultiplier tube array
shielding to minimize background radiation
position logic circuits
and the data analysis computer

Through this design the simultaneous registration of gamma ray photons is possible, the computer further allows dynamic imaging.

See also Pinhole, Elution, Center of Rotation, First Pass Scintigraphy, and Anger Hal Oscar.
Gantry
The gantry is a ring-shaped structure, containing the x-ray tube, collimators, filters, data acquisition system (DAS), associated electronics such as gantry angulation motors, rotational components including slip ring systems and the detector array in a CT or radiation therapy system. The table control, to regulate the gantry tilt and laser (or high intensity) lights are included within, or mounted on the gantry serving as anatomical positioning guides. To scan the patient, the patient table is moved through the gantry aperture.
The rotating arm on which an accelerator head is mounted is also called gantry. This gantry can rotate 360 degrees around its axis.
Gantry Tilt
The gantry tilt is the angle between the vertical plane, and the plane containing the x-ray beam and the detector array. The gantry angulation allows aligning the selected anatomic region with the scanning plane.
A CT gantry can typically be angled up to 30° forward or backward. However, the gantry angulation is determined by the manufacturer and varies among CT systems. In a series of CT scans made with a tilted gantry the anatomy shifts in location from scan to scan.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn

Look
      Ups
Radiology - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertising
 [last update: 2023-11-06 02:01:00]