Radiology - Technology Information Portal
Thursday, 18 April 2024
• Welcome to Radiology-TIP.com!
     • Sign in / Create account
 
 'Binding Energy' 
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Searchterm 'Binding Energy' found in 1 term [
] and 5 definitions [
], (+ 1 Boolean[
] results
Result Pages :
Binding Energy
Binding energy is equal to the amount of energy which is used to free electrons or disintegrate nuclides from their atomic bond.
The electron binding energy of a hydrogen atom is with 13.6 eV very low. The nuclear binding energy of an alpha-particle, energy equivalent of the sum of the individual masses of nuclides minus the mass of the whole nucleus, is 28.3 MeV.

See also Alpha Decay, Beta Decay and Gamma Quantum.
Energy
In physics, energy is described as the ability to do work by a force, measured in joules (J).
Several different forms of energy exist to describe various natural phenomena.

See also Photon Energy, Rest Energy, Binding Energy, Kinetic Energy and Effective Energy.
Internal Conversion
In the internal conversion process the multipole electric field of the nucleus of an atom, in an electromagnetically excited state, react with an orbit electron. With enough energy the electron is ejected (internal conversion electron). The energy of the conversion electron depends on the energy transferred from the nucleus reduced by the shell specific binding energy. This process competes with gamma emission. The refilling for the vacancy left by the internal conversion electron occurs through the Auger effect, a higher orbit electron take place and x-ray or an Auger electron will be emitted.
The atomic number of the atom gets not changed by internal conversion.

See also Conversion Electron, Auger Effect and Auger Electron.
Isomeric Transition
If a nucleus still has excess energy after attempts of stabilization, it can emit energy without changing the number of protons or neutrons. This process is named isomeric transition. One way of isomeric transition is the emission of a gamma rays, the other competing way is internal conversion, where the excess energy of the nucleus must exceed the binding energy of an electron, which then will be ejected from the atom.

See also Decay, Gamma Radiation and Internal Conversion.
Photoelectric Effect
The photoelectric effect describes the following interaction of electromagnetic radiation with a metallic surface: a photon with an energy (frequency) above the binding energy of an electron gets absorbed and the electron is emitted. The positive energy difference is transferred to the electrons kinetic energy. If the photons energy is not high enough for the electron to overcome its binding forces, the photon will be re-emitted. It is not the intensity of a photon beam (amount of photons) which allows the photoelectric effect; it is the energy (frequency) of a single photon which will allow the emission of a single photoelectron.
The discovery and study of the photoelectric effect leads to a new quantized understanding in physics. Albert Einstein was awarded the Noble prize for physics in 1921 'for his services to theoretical physics and especially for his discovery of the law of the photoelectric effect'.
The photoelectric effect is the most important effect in medical radiography. E.g. it is photoelectric absorption that is responsible for most of the absorption in a mammogram which creates the contrast in the image.

See also Photon, Electron.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn

Look
      Ups
Radiology - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertising
 [last update: 2023-11-06 02:01:00]