Radiology - Technology Information Portal
Tuesday, 7 May 2024
• Welcome to Radiology-TIP.com!
     • Sign in / Create account
 
 'Direct Radiation' p3
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Searchterm 'Direct Radiation' found in 1 term [
] and 1 definition [
], (+ 18 Boolean[
] results
Result Pages :
Conventional Radiography
Conventional (also called analog, plain-film or projectional) radiography is a fundamental diagnostic imaging tool in the detection and diagnosis of diseases. X-rays reveal differences in tissue structures using attenuation or absorption of x-ray photons by materials with high density (like calcium-rich bones).
Basically, a projection or conventional radiograph shows differences between bones, air and sometimes fat, which makes it particularly useful to asses bone conditions and chest pathologies. Low natural contrast between adjacent structures of similar radiographic density requires the use of contrast media to enhance the contrast.
In conventional radiography, the patient is placed between an x-ray tube and a film or detector, sensitive for x-rays. The choice of film and intensifying screen (which indirectly exposes the film) influence the contrast resolution and spatial resolution. Chemicals are needed to process the film and are often the source of errors and retakes. The result is a fixed image that is difficult to manipulate after radiation exposure. The images may be also visualized on fluoroscopic screens, movies or computer monitors.
X-rays emerge as a diverging conical beam from the focal spot of the x-ray tube. For this reason, the radiographic projection produces a variable degree of distortion. This effect decreases with increased source to object distance relative to the object to film distance, and by using a collimator, which let through parallel x-rays only.
Conventional radiography has the disadvantage of a lower contrast resolution. Compared with computed tomography (CT) and magnetic resonance imaging (MRI), it has the advantage of a higher spatial resolution, is inexpensive, easy to use, and widely available. Conventional radiography can give high quality results if the technique selected is proper and adequate. X-ray systems and radioactive isotopes such as Iridium-192 and Cobalt-60 for generating penetrating radiation, are also used in non-destructive testing.

See also Computed Radiography and Digital Radiography.
Direct Exposure Film
Direct exposure films are highly sensitive to the direct effect of x-rays rather than in combination with an intensifying screen. However, a film is a relatively inefficient radiation detector and requires relatively high radiation exposure. The use of rectangular collimation and the highest speed films reduce radiation exposure.

See also Conventional Radiography.
Fluoroscopy
Fluoroscopy is used to study moving body structures in real time. A fluoroscope is used to produce a continuous (advanced fluoroscopy machines provide pulsed techniques to lower the amount of radiation) x-ray beam, passing through the body part being examined and transmitted to a monitor so that dynamic images of deep tissue structures can be visualized. Fluoroscopy is primarily used for gastrointestinal exams, genitourinary studies, cardiovascular imaging and for invasive procedures performed by interventional radiologists and angiographers under fluoroscopic guidance. Fluoroscopy can also produce a static record of an image formed on the output phosphor of an image intensifier. The image intensifier is an x-ray image receptor that increases the brightness of a fluoroscopic image by electronic amplification and image minification. Modern fluoroscopy systems combine less radiation with better image quality due to digital image processing and flat-panel technology.
Roentgen's discovery of x-rays related directly to fluoroscopy, because fluorescence on the material in the room draws his attention to the x-ray's properties. In 1896, Thomas A. Edison created the first fluoroscope, consisting of a zinc-cadmium sulfide screen that was placed above the patient's body in the x-ray beam and provides a faint fluorescent image. In first-generation units, the exam room required complete darkness. The users wear red goggles for up to 30 minutes prior to the examination, to adapt the eyes to darkness. After this, the radiologist stared directly at a yellow-green fluorescent image through a sheet of lead to prevent the x-ray beam from striking the eyes.
Mammography
Mammography is a diagnostic imaging procedure of the breast to detect and evaluate breast disease. Mammography is widely used as a screening method and plays a key role in early breast cancer detection.
The screening mammography is used to detect breast changes in women who have no signs or symptoms or noticed breast abnormalities. The goal is to detect a breast tumor before any clinical signs are observable.
A diagnostic mammography is used to investigate suspicious breast changes, such as a breast lump, an unusual skin appearance, breast pain, nipple thickening or nipple discharge.
A breast screening or standard mammography requires two mammograms from different angles of each breast including craniocaudal view and mediolateral view. Additional images can be made from other angles or focus on microcalcifications or other suspicious areas.
A mammogram is created by special mammography equipment with long wavelength of the used x-rays. Film-screen mammography is still the most widely used technology, but the state of the art technique is digital mammography. Conventional x-ray equipment was used to produce mammograms until dedicated mammography equipment became available in the late 1960s. Film-screen mammography and xeromammography, introduced in the early 1970s, used lower radiation doses and produced sharper mammograms. The second generation of mammography systems has been introduced in the early 1980s. Chief disadvantages of analog mammography include the labor-intensive handling of the cassettes, relatively slow processing time, the lack of a direct interface to the x-ray system, and no post processing possibilities.
Mammograms of high quality should be done with the lowest radiation dose as possible. Adequate breast compression is important due to shortening of the exposure times, immobilization of the breast, reduction of motion and blurring and prevention of overpenetration by means of equalizing breast thickness.
Further breast imaging procedures include breast ultrasound and breast MRI.
Neutron Radiation
Neutron radiation is one type of ionizing radiation. Neutrons get emitted from an atom by the fission process or by decay processes. In the upper atmosphere neutron radiation is produced by the interaction of cosmic radiation with air. Neutron radiation is used for the production of medical isotopes and certain direct medical therapies.

See also Neutron Activation, Neutron Activation Analysis and Neutron Capture.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Radiology - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertising
 [last update: 2023-11-06 02:01:00]