Radiology - Technology Information Portal
Saturday, 4 May 2024
• Welcome to Radiology-TIP.com!
     • Sign in / Create account
 
 'Image Quality' p3
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Searchterm 'Image Quality' found in 1 term [
] and 13 definitions [
], (+ 9 Boolean[
] results
Result Pages :
Fluoroscopy
Fluoroscopy is used to study moving body structures in real time. A fluoroscope is used to produce a continuous (advanced fluoroscopy machines provide pulsed techniques to lower the amount of radiation) x-ray beam, passing through the body part being examined and transmitted to a monitor so that dynamic images of deep tissue structures can be visualized. Fluoroscopy is primarily used for gastrointestinal exams, genitourinary studies, cardiovascular imaging and for invasive procedures performed by interventional radiologists and angiographers under fluoroscopic guidance. Fluoroscopy can also produce a static record of an image formed on the output phosphor of an image intensifier. The image intensifier is an x-ray image receptor that increases the brightness of a fluoroscopic image by electronic amplification and image minification. Modern fluoroscopy systems combine less radiation with better image quality due to digital image processing and flat-panel technology.
Roentgen's discovery of x-rays related directly to fluoroscopy, because fluorescence on the material in the room draws his attention to the x-ray's properties. In 1896, Thomas A. Edison created the first fluoroscope, consisting of a zinc-cadmium sulfide screen that was placed above the patient's body in the x-ray beam and provides a faint fluorescent image. In first-generation units, the exam room required complete darkness. The users wear red goggles for up to 30 minutes prior to the examination, to adapt the eyes to darkness. After this, the radiologist stared directly at a yellow-green fluorescent image through a sheet of lead to prevent the x-ray beam from striking the eyes.
• 
View NEWS results for 'Fluoroscopy' (3).Open this link in a new window.
Image Resolution
Image resolution is a measurement of the scanned, printed, or displayed image quality. Picture resolution on a printed photo or page is measured in dots per inch (DPI). For digital files, image resolution is expressed in pixels per inch (PPI).
The quality of pixel-based images is directly determined by resolution choices. Higher image resolution results in more detailed images but requires more storage space in a picture archiving and communication system.
The resolution for x-ray images can be defined as the period length of the finest grid that can be viewed without difficulty.
Low Contrast Resolution
(LCR) The low contrast resolution describes the ability to discriminate between tissues with slightly differences in attenuation properties. The LCR depends on the stochastic noise.
The low contrast resolution is usually expressed as the minimum detectable size of an image structure, for a fixed percentage difference in contrast relative to the adjacent background.
A strength of computed tomography (CT) is its ability to visualize structures of low contrast in an object, a task that is limited by noise and is closely associated with the radiation dose. For example, a reduction of the dose at constant spatial resolution affects the visibility of structures with low contrast (e.g. vessels in the liver), due to increased noise. The visibility of these low contrast structures can partly be improved by decreasing the spatial resolution, while keeping the dose constant.

See also CT Number, Image Quality and Low Contrast Detectability.
Resolution
In medical imaging, resolution is the ability to distinguish two adjacent objects and a measurement of image quality. The resolution of tomographic images is a function of slice thickness, field of view (FOV) and matrix size. The resolution in plane is a function of FOV / matrix size.
Digital Radiography
(DR) Digital radiography uses a special electronic x-ray detector, which converts the radiographic image into a digital picture for review on a computer monitor. The digital image is then stored and can be post processed by changing the magnification, orientation, brightness, and contrast. Digital radiography (also called direct radiography) is a progressive development of computed radiography (CR).
These advantages can lead to fewer 'recalls' (repeated x-ray images) including a lower radiation dose than analog or conventional radiography. DR and CR systems use no chemicals to process the x-ray images and the hazardous materials and waste associated with film development are eliminated.

Advantages of digital radiography compared with conventional radiography:
saves time and costs due to more effective imaging process and workflow;
improved diagnostic quality images also in cases of x-ray under exposition or over exposition;
lower repeat rate;
films and developing chemicals are omitted;
reduction of hazardous chemical waste.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Radiology - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertising
 [last update: 2023-11-06 02:01:00]