Radiology - Technology Information Portal
Monday, 29 April 2024
• Welcome to Radiology-TIP.com!
     • Sign in / Create account
 
 'Volt' p4
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Searchterm 'Volt' found in 3 terms [
] and 14 definitions [
]
Result Pages :
X-Ray Spectrum
The x-ray (or roentgen-ray) spectrum consists of electromagnetic radiation with wavelengths shorter than ultraviolet (UV) and longer than gamma rays. The usual photon energies of x-rays range from 100 electron volt (eV) to 100 keV (wavelengths of around 10 to 0.01 nanometers; or around 100 to 0.1 Angstroms); corresponding to frequencies in the range of 30 PHz to 30 EHz (see Hertz).
The energy distribution (wavelength, frequency) of x-ray photons emerges from the source, the x-ray tube. In a conventional tube, x-rays are generated in two different ways that, together, form a typical spectrum consisting of the bremsstrahlung, which is superimposed by the lines of the characteristic spectrum (in a graph, the curve is shaped like a hump topped by several spikes).

See also Angstrom, Direct Radiation, Secondary Radiation, and Radiation Meter.
• 
View NEWS results for 'X-Ray Spectrum' (2).Open this link in a new window.
X-Ray Tube
X-ray tubes are devices for the production of x-rays. X-ray tubes consist of an evacuated glass vessel and two electrodes. An electrical current with very high voltage passes across the tube and accelerates electrons emitted by thermionic emission from a tungsten filament (cathode also called electron gun) towards the anode target. The electrons collide with the anode and this deceleration generates x-rays (bremsstrahlung).
The high vacuum allows the electron beam an unimpeded passage. The electron beam heats the anode (usually copper), which is cooled by water to prevent melting. A copper target emits x-rays with a characteristic wavelength. Other used metals soften or harden the x-ray beam.
The x-rays pass through a very thin beryllium (Be) foil. This beryllium window absorbs a high amount of the elastically scattered electrons (produced by the target) and allows the radiation to get out of the tube without substantial absorption.
In conventional x-ray tubes, the anode is also the target. In nanofocus and microfocus x-ray tubes, the electron beam is transmitted through a hole in the anode where it is then focused onto a small spot on the target.

See also X-Ray Tube Housing, Fine Focus X-Ray Tube, Transformer, Diode, Digital to Analog Converter and Angular Response.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Radiology - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertising
 [last update: 2023-11-06 02:01:00]