Radiology - Technology Information Portal
Saturday, 4 May 2024
• Welcome to Radiology-TIP.com!
     • Sign in / Create account
 
 'Reconstruction' p2
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Searchterm 'Reconstruction' found in 6 terms [
] and 17 definitions [
]
Result Pages :
Reconstruction Field Of View
(RFOV) The reconstruction field of view is the size of the scan field of view (SFOV) that is reconstructed to form a CT image.
Computed Tomography
(CT or CAT scan) Computed tomography is a diagnostic imaging technique, previously also known as computerized axial tomography (CAT), computer-assisted tomography (CAT), computerized tomographic imaging, and reconstructive tomography (RT).
A CT scan is based on the measurement of the amount of energy that a tissue absorbs as a beam of radiation passes through it from a source to a detector. As the patient table moves through the CT scanner, the CT tube rotates within the circular opening and the set of x-ray detectors rotate in synchrony. The narrow, fan-shaped x-ray beam has widths ranging from 1 to 20 mm. The large number of accurate measurements with precisely controlled geometry is transformed by mathematical procedures to image data. Corresponding to CT slices of a certain thickness, a series of two-dimensional cross-sectional images is created.
A CT is acquired in the axial plane, while coronal and sagittal images can be rendered by computer reconstruction. Although a conventional radiography provides higher resolution for bone x-rays, CT can generate much more detailed images of the soft tissues. Contrast agents are often used for enhanced delineation of anatomy and allow additional 3D reconstructions of arteries and veins.
CT scans use a relatively high amount of ionizing radiation compared to conventional x-ray imaging procedures. Due to widespread use of CT imaging in medicine, the exposure to radiation from CT scans is an important issue. To put this into perspective, the FDA considers the risk of absorbed x-rays from CT scans to be very small. Even so, the FDA recommends avoiding unnecessary exposure to radiation during diagnostic imaging procedures, especially for children.
CT is also used in other than medical fields, such as nondestructive testing of materials including rock, bone, ceramic, metal and soft tissue.

See also Contrast Enhanced Computed Tomography.
Magnification
Usually, magnification is the enlargement of an area by interpolation after the reconstruction of an image. Magnification does not provide more information, but allows a better view of certain object details. A zoom reconstruction is based on the raw data of the scan. Magnification software enlarges an image by mapping one pixel onto an n x n array of screen pixels (pixel stretching).
Other types of magnification include electron-optical, geometric, the product of geometric and the electron-optical magnification and enlargement by imaging procedures.
Electron-optical magnification is the ratio of the dimension of the detector input image and the size of the image on the screen. This ratio is determined by all electronic and optical imaging processes of the image chain, provided that one camera pixel is mapped onto accurately one monitor pixel.
Geometric magnification occurs in x-ray images when the focal spot is theoretically assumed to be a point and not an area. For nanofocus and microfocus radiographic systems, the focus-to-detector (film) distance and the focus-to-object (film) distance defines the geometric magnification.
The total magnification is the product of the electron-optical and geometric magnification. Possible magnifications are up to a factor of 26,000.
Magnification procedures in medical imaging are usually produced by extended distance between the subject and the image receptor.
Raw Data
Raw data are the values of all measured detector signals during a scan. After calibration for fluctuations in tube output and beam hardening, the attenuation properties of each x-ray signal are accounted and correlated with the ray position. From these data the CT images are reconstructed including the use of mathematical procedures like convolution filtering and back projection.
Raw data can also be used for later reconstruction of additional planes and images by using a different convolution filter, zoom reconstruction, or an alternative CT number scale.

See also Magnification, Archiving, Number of Measurements and Convolution.
Tomography
Tomography is imaging by sections or sectioning to obtain images of slices through objects like the human body. Tomography is derived from the Greek words 'to cut or section' (tomos) and 'to write' (graphein). A device used in tomography is called a tomograph, while the image produced is a tomogram.
The first medical applications utilized x-rays for images of tissues based on their x-ray attenuation coefficient. The mathematical basis for tomographic imaging was laid down by Johann Radon. This type of imaging is used in different medical applications as for example computed tomography, ultrasound imaging, positron emission tomography and magnetic resonance imaging (MRI) also called magnetic resonance tomography (MRT).
Conventional x-ray tomographic techniques show organ structures lying in a predetermined plane (the focal plane), while blurring the tissue structures in planes above and below by linear or complex geometrical motion of the x-ray tube and film cassette.
Basically, computed tomography is the reconstruction of an image from its projections. In the strict sense of the word, a projection at a given angle is the integral of the image in the direction specified by that angle. The CT images (slices) are created in the axial plane, while coronal and sagittal images can be rendered by computer reconstruction.

See also Zonography, Computed or Computerized Axial Tomography, Resolution Element, Radiographic Noise, Intravenous Pyelogram.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Radiology - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertising
 [last update: 2023-11-06 02:01:00]