Radiology - Technology Information Portal
Sunday, 5 May 2024
• Welcome to Radiology-TIP.com!
     • Sign in / Create account
 
 'Tomography' p2
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Searchterm 'Tomography' found in 6 terms [
] and 67 definitions [
]
Result Pages :
Computed (or Computerized) Axial Tomography
(CAT) See Computed Tomography.
Diagnostic Imaging
Imaging refers to the visual representation of an object. Today, diagnostic imaging uses radiology and other techniques, mostly noninvasive, to create pictures of the human body. Diagnostic radiography studies the anatomy and physiology to diagnose an array of medical conditions. The history of medical diagnostic imaging is in many ways the history of radiology. Many imaging techniques also have scientific and industrial applications. Diagnostic imaging in its widest sense is part of biological science and may include medical photography, microscopy and techniques which are not primarily designed to produce images (e.g., electroencephalography and magnetoencephalography).
Brief overview about important developments:
Imaging used for medical purposes, began after the discovery of x-rays by Konrad Roentgen 1896. The first fifty years of radiological imaging, pictures have been created by focusing x-rays on the examined body part and direct depiction onto a single piece of film inside a special cassette.
In the 1950s, first nuclear medicine studies showed the up-take of very low-level radioactive chemicals in organs, using special gamma cameras. This diagnostic imaging technology allows information of biologic processes in vivo. Today, single photon emission computed tomography (SPECT) and positron emission tomography (PET) play an important role in both clinical research and diagnosis of biochemical and physiologic processes.
In the 1960s, the principals of sonar were applied to diagnostic imaging. Ultrasound has been imported into practically every area of medicine as an important diagnostic tool, and there are great opportunities for its further development. Looking into the future, the grand challenges include targeted contrast imaging, real-time 3D or 4D ultrasound, and molecular imaging. The earliest use of ultrasound contrast agents (USCA) was in 1968.
The introduction of computed tomography (CT/CAT) in the 1970s revolutionized medical imaging with cross sectional images of the human body and high contrast between different types of soft tissues. These developments were made possible by analog to digital converters and computers. First, spiral CT (also called helical), then multislice CT (or multi-detector row CT) technology expanded the clinical applications dramatically.
The first magnetic resonance imaging (MRI) devices were tested on clinical patients in 1980. With technological improvements including higher field strength, more open MRI magnets, faster gradient systems, and novel data-acquisition techniques, MRI is a real-time interactive imaging modality that provides both detailed structural and functional information of the body.

Today, imaging in medicine has been developed to a stage that was inconceivable a century ago, with growing modalities:
x-ray projection imaging, including conventional radiography and digital radiography;
scintigraphy;
single photon emission computed tomography;
positron emission tomography.

All these types of scans are an integral part of modern healthcare. Usually, a radiologist interprets the images. Most clinical studies are acquired by a radiographer or radiologic technologist. In filmless, digital radiology departments all images are acquired and stored on computers. Because of the rapid development of digital imaging modalities, the increasing need for an efficient management leads to the widening of radiology information systems (RIS) and archival of images in digital form in a picture archiving and communication system (PACS). In telemedicine, medical images of MRI scans, x-ray examinations, CT scans and ultrasound pictures are transmitted in real time.

See also Interventional Radiology, Image Quality and CT Scanner.
CT Angiography
(CTA) A computed tomographic angiography or computerized tomography angiogram is a diagnostic imaging test that combines conventional CT technique with that of traditional angiography to create images of the blood vessels in the body - from brain vessels to arteries of the lungs, kidneys, arms and legs.
High resolution CT scans with thin slices and intravenous injection of iodinated contrast material provide detailed images of vascular anatomy and the adjacent bony structures. CTA requires rapid scanning as the imaging data are typically acquired during the first pass of a bolus of contrast medium. The selection of acquisition timing is important to optimize the contrast enhancement, which is dependent on contrast injection methods, imaging techniques and patient variations in weight, age and health. CT angiography is less invasive compared to conventional angiography and the data can be rendered in three dimensions.

CTA techniques are commonly used to:
Detect pulmonary embolism with computed tomography pulmonary angiography;
rule out coronary artery disease with coronary CT angiography;
evaluate heart disease with cardiac CT;
identify aneurysms, dissections, narrowing, obstruction and other vessel disease in the aorta or major blood vessels;

See also Cardiovascular Imaging, Magnetic Resonance Angiography MRA, Coronary Angiogram, Computed Tomography Dose Index and Computed or Computerized Axial Tomography.
Abdomen CT
A computed tomography (CT) of the abdomen images the region from the thoracic diaphragm to the pelvic groin. The computed tomography technique uses x-rays to differentiate tissues by their different radiation absorption rates.
Oral contrast material can be given to opacify the bowel before scanning. An i.v. injection of a contrast agent (x-ray dye) improves the visualization of organs like liver, spleen, pancreas and kidneys and provides additional information about the blood supply.
Spiral- or helical CT, including improvements in detector technology support faster image acquisition with higher quality. Advanced CT systems can usually obtain a CT scan of the whole abdomen during a single breath hold. This speed increases the detection of small lesions (caused by differences in breathing on consecutive scans) and is beneficial especially in pediatric, elderly or critically-ill patients.
Changes in patient weight require variations in x-ray tube potential to maintain constant detector energy fluence. An increased x-ray tube potential improves the contrast to noise resolution (CNR).

An abdominal CT is typically used to help diagnose the cause of abdominal pain and diseases such as:
appendicitis, diverticulitis;
kidney and gallbladder calcifications;
abscesses and inflammations;
cancer, metastases and other tumors;
pancreatitis;
vascular disorders.

Other indications for CT scanning of the abdomen/pelvis include planning radiation treatments, guide biopsies and other minimally invasive procedures. Advanced techniques include for example 3D CT angiography, multiphasic contrast-enhanced imaging, virtual cystoscopy, virtual colonoscopy, CT urography and CT densitometry.

See also Contrast Enhanced Computed Tomography.
Baro-Cat®
Baro-Cat® is a barium sulfate suspension for use as an aid for computed tomography of the gastrointestinal tract. The contrast medium contains additional pineapple-banana flavor suspending agents, simethicone, potassium sorbate, citric acid, sorbitol, artificial sweetener and water.
Individual technique will determine the suspension quantity and specific procedure used. For computed tomography of the upper gastrointestinal tract should the patient drink 300 mL Baro-Cat® approximately 2 hours before and an additional 300 mL approximately 15 minutes prior to the CT scan. For total bowel opacification the patient should drink additional 300 mL the night before the examination. If rapid transit is desired, administer the suspension chilled. Rectally administered the contrast agent should be at room temperature to body temperature.

Drug Information and Specification
NAME OF COMPOUND
Barium sulfate (BaSO4)
DEVELOPER
Mallinckrodt, Inc.
INDICATION
Bowel opacification
APPLICATION
Oral, rectal
CONCENTRATION
1.5 w/v barium sulfate suspension
300-900 mL
PREPARATION
Ready-to-use product
STORAGE
Store between 15° and 30°C (59° and 86°F); protect from freezing.
PRESENTATION
300, 900 mL bottle
DO NOT RELY ON THE INFORMATION PROVIDED HERE, THEY ARE NOT A SUBSTITUTE FOR THE ACCOMPANYING PACKAGE INSERT!
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Radiology - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertising
 [last update: 2023-11-06 02:01:00]